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Abstract

Causality is an intriguing concept that once tamed, can have many applications. While having been widely
investigated in other domains, its relevance and usefulness in the cybersecurity domain has received little
attention. In this paper, we present a systematic investigation of a particular approach to causality, known as
Granger causality (G-causality), in cybersecurity. We propose a framework, dubbed Cybersecurity Granger
Causality (CGC), for characterizing the presence of G-causality in cyber attack rate time series and for
leveraging G-causality to predict (i.e., forecast) cyber attack rates. The framework offers a range of research
questions, which can be adopted or adapted to study G-causality in other kinds of cybersecurity time series
data. In order to demonstrate the usefulness of CGC, we present a case study by applying it to a particular
cyber attack dataset collected at a honeypot. From this case study, we draw a number of insights into the
usefulness and limitations of G-causality in the cybersecurity domain.
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1. Introduction

Cyber attacks have become a big threat against the
modern society in many aspects, such as critical
infrastructure, economy, and citizen privacy. According
to a 2019 report by Symantec [1], a compromised credit
card can be sold/purchased for up to US$45 in the
underground market, whereas compromised websites
can be sold/purchased for up to US$2.2 million each
month. According to a 2019 report by ForgeRock [2],
2.8 billion consumer data records are breached in 2018,
costing more than US$654 billion to U.S. organizations;
the report also states that in the first quarter of 2019,
cyber attacks against the U.S. financial services sector
cost more than US$6.2 billion. These huge damages
call for studies to understand and characterize cyber
attacks from various perspectives and at various levels
of abstractions.

∗Corresponding author. Email: sxu@uccs.edu

Most studies on cyber attacks focus on microscopic
levels of abstractions (e.g., how to defend against a
particular attack). These studies are absolutely impor-
tant because they provide the necessary building-block
solutions. However, understanding and characteriz-
ing cyber attacks from macroscopic levels of abstrac-
tions is equally important but much less investigated.
Such macroscopic-level studies are important because
they would offer insights towards holistic solutions to
defending cyber attacks.

One particular kind of macroscopic study is to
forecast (i.e., predict) cyber attacks at macroscopic
levels, so as to achieve what may be called predictive
situational awareness. There have been a number of
studies in both univariate time series analysis in the
cybersecurity domain (e.g., [3–14]) and multivariate
time series analysis in the cybersecurity domain
(e.g., [7, 15–17]). The present study belongs to this
category, but initiating a new perspective of research.
Specifically, we investigate the usefulness of causality in
cybersecurity. Since the notion of causality is elusive,
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we focus on a particular approach known as Granger
Causality (G-Causality) [18], which can be understood
as follows: If one time series can be leveraged to help
predict another time series more accurately than using
the historic data of the latter alone to predict it, then
the former is said to G-cause the latter. We call the
former time series a “helper” because it can used to help
predict the latter more accurately.

Our Contributions. This paper makes two contribu-
tions. First, we initiate the investigation on the use-
fulness and limitations of G-causality in cyber attack
rate time series. We propose a framework, dubbed
Cybersecurity Granger-Causality (CGC) with a range
of intuitive research questions, which can be adopted
or adapted to characterize and leverage G-causality in
other kinds of cybersecurity time series data. In order
to formalize research problems, we propose using a
graph-theoretic representation of G-causality between
time series. In particular, CGC aims to help achieve pre-
dictive cybersecurity situational awareness and there-
fore possibly proactive defense (e.g., allocating more
defense resources when predicting that there will be
more incoming attacks). To achieve this, we recognize
that one key research issue is to select an appropriate
number of good helpers at a proper network resolution
(e.g., /8 vs. /24), where a helper is, as mentioned above,
a time series that G-causes the time series in question.
This research issue goes beyond the original G-causality
framework [18]. We systematically address this issue by
considering multiple factors and models. To the best of
our knowledge, this is the first study in characterizing
the usefulness and limitations of G-causality in predic-
tive cybersecurity situational awareness.

Second, in order to demonstrate the usefulness of
the framework, we conduct a case study by applying
it to a dataset collected by a low-interaction honeypot.
This case study enables us to draw a number of
insights, such as the following. (i) For measuring
cyber attack situational awareness, network resolution
matters and using a higher resolution (e.g., /24)
would be better than using a lower resolution (e.g.,
/16 or /8). (ii) Cybersecurity posture at the /16 and
/24 network resolutions do change over a period
of time, albeit slowly. (iii) G-causality is widely
exhibited by cyber attack rate time series at multiple
network resolutions, hinting that cyber attacks are
not random. (iv) Bidirectional G-causality is widely
exhibited at multiple network resolutions, suggesting
that G-causality does not really capture the intuitive
notion of causality, which should be unidirectional.
(v) G-causality is widely exhibited across network
resolutions; this represents an aspect that also goes
beyond the original G-causality framework [18]. (vi)
Leveraging bidirectional G-causality leads to higher

prediction accuracy than leveraging unidirectional G-
causality, especially when the time series in question are
dense or correspond to low-resolution networks. This
suggests that G-causality is useful despite that it does
not really capture the intuitive notion of unidirectional
causality. (vii) When leveraging G-causality to predict
time series, using an excessive number of helpers
can decrease prediction accuracy. This highlights the
importance of selecting an appropriate number of
helpers. (viii) When time series are dense, a smaller
p-value incurred in the G-causality test, which hints
a stronger degree of G-causality, would lead to more
accurate predictions.

Related Work. The present study falls into the field of
cybersecurity data analytics [19–27], which is a sub-
field of the emerging Cybersecurity Dynamics [28–
38]. More specifically, the present study falls into the
sub-field of multivariate time series analysis [7, 15–
17] of cybersecurity data analytics. There are studies
on univariate time series analysis of cybersecurity data
analytics, such as [3–14, 39]. However, these studies do
not consider causality. In this paper we investigate a
new aspect of cybersecurity data analytics, namely G-
causality. Although G-causality is widely investigated
in many domains (e.g., finance and economics [40],
biology [41], social behaviors [42], and wireless
communications [43]), its relevance to the cybersecurity
domain is little investigated. The only exception we
are aware is [44], which applies G-causality to confirm
the presence of TCP flooding attacks. By contrast, we
initiate the study on the usefulness and limitations
of G-causality in predictive cybersecurity situational
awareness, which is different from what is studied in
[44]. Another related prior study is [45], which uses
Bayesian networks to predict next attack steps in the
context of intrusion detection. By contrast, we do not
consider Bayesian networks.

Paper Outline. Section 2 reviews preliminary knowl-
edge on the Auto-Regressive model and the notion of
G-causality. Section 3 presents the CGC framework.
Section 4 describes the case study. Section 5 discusses
the limitations of the present study. Section 6 concludes
the paper. Table 1 summarizes the main notations that
are used throughout the paper.

2. Preliminaries

2.1. The Auto-Regressive (AR) Model

AR is a widely used statistical model, which leverages
temporal correlations of a time series to predict its
future values [46]. AR uses linear regression to predict
future values as a function of ‘ past observation values
(indicating how far one looks back), where ‘ is the order
of the AR model or lag. Formally, the AR model for time
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Table 1.Notations

Notation Description
n the number of networks (at a resolution)

waging attacks
T the time horizon at a certain resolution

(e.g., days)
TC current time 1 � TC � T � 1
Xi (TC) the time series representing the number

of attacks waged from network i up to
time TC, with Xi (TC) = (xi;t )1� t � TC

and
1 � i � n

X(TC) X(TC) = fX1(TC); : : : ; Xn(TC)g
X0(TC) the subset of stationary time series of

X(TC)
X00(TC) the subset of stationary time series X0(TC)

that are also associated with G-causality
x̂i;t ; ŷi;t predictions of xit and yit , respectively
` the lag value (i.e., time steps used in a

prediction model)
AXi ;Xi;t

coe� cients of time series Xi w.r.t. itself
AXi ;Xj;t

coe� cients of time series Xi w.r.t. Xj

err; � white noises
pij (TC) the p-value in the F-statistic that Xi (TC)

G-causesXj (TC) when applicable; pij = ?
when not applicable

G(TC) G(TC) = (X(TC); E(TC); W(TC)) is G-
causality graph, where X(TC) is
the vertex set (representing time
series), (Xi (TC); Xj (TC)) 2 E(TC)
means Xi (TC) G-causes Xj (TC), and
W(TC) = (pij (TC))1� i;j � n

G[r ](TC) G-causality graph G(TC) at network
resolution r ; e.g.,r 2 f=8; =16; =24g

seriesXi = (xi;t )t=1;2;::: is:

xi;t = � 0 +
X̀

k=1

� kxi;t � k + � i;t ; (1)

where � 0; : : : ; � ` are coe� cients and � i;t is a white-
noise random variable (i.e., independent and identically
distributed normal random variable with mean 0). In
this paper, xi;t is the number of attacks that are waged
from network i at time t .

2.2. G-causality

The notion of G-causality is named after its inventor
Clive Granger and aims to capture causal relations
between time series [18]. It is introduced to predict time
series in the economics domain and later adapted to
other domains [47–50]. It is de�ned for stationary time
series, whose statistical properties (e.g., mean, variance,
co-variance) do not change with time (cf. e.g., [3, 5, 51]).

In practice, stationarity may be tested based on the
�rst and second moments, sometimes known as wide-
sense stationarity. There are many methods for testing
whether a time series is stationary or not (e.g., Phillips-
Perron [52] and Augmented Dickey-Fuller [53]).

As mentioned above, in this paper Xi = (xi;t )t=1;2;:::
represents cybersecurity time series, such as thecyber
attack rate time series [3]. Intuitively, Xi is said to
Granger-cause or G-causeXj , where i , j , if the past
observation values of Xi contain some information that
can be leveraged to predict future values of Xj more
accurately than predicting Xj by only leveraging its
past observation values [18]. Similar to the lag ` in the
AR model, the number of the past observation values
of Xi , which are leveraged to predict future values
of Xj , is also called lag and denoted by ` . Since a
large ` may cause over-�tting and a small ` may cause
auto-correlation errors [54], it is important to select
an appropriate ` via some criterion, such as Bayesian
Information Criterion (BIC) [55] or Akaike Information
Criterion (AIC) [56], meaning that the optimal ` is the
one that minimizes the AIC or BIC function.

Formally, G-causality is de�ned using the linear
Vector Auto-Regressive model (VAR) over multivariate
time series. In order to highlight the idea, let us consider
the example of bi-variate VAR model, while noting that
the idea is equally applicable to other multivariate time
series. The bi-variate VAR model (or 2VAR) involves two
time series Xi and Xj with lag ` and is described as:

xi;t = � i +
X̀

k=1

AXi ;Xj;t � k
xj;t � k +

X̀

k=1

AXi ;Xi;t � k
xi;t � k + err i;t ;

(2)

xj;t = � j +
X̀

k=1

AXj ;Xi;t � k
xi;t � k +

X̀

k=1

AXj ;Xj;t � k
xj;t � k + err j;t :

(3)
where the A� ;� 's are regression coe� cients and err i;t
and err j;t are white-noise errors (i.e., independent and
identically distributed normal random variables with
mean 0).

The VAR model is used to test G-causality between
Xi and Xj as follows. The null hypothesis is that Xi does
not G-cause Xj , namely that AXj ;Xi;t � k

= 0 for 1 � k � `
or Xi has no impact on predicting Xj [18]. To test this,
one may use the F-statistic hypothesis test [57]. Time
series Xi is said to G-causeXj if the null hypothesis is
rejected, meaning that the p-value in the F-statistic is
less than 0.05, which is a widely-used signi�cant level.
The same method is used to test whether Xj G-causes
Xi or not. G-causality is not necessarily symmetric,
meaning that Xi G-causing Xj does not necessarily
mean Xj G-causing Xi .
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2.3. Prediction Accuracy Metric

In order to evaluate prediction accuracy, we propose
adopting the standard metric known as Symmetric
Mean Absolute Percentage Error (SMAPE) [58]. Let
(xi;t ; : : : ; xi;t +� ) be the observation values of a time series
and (x̂i;t ; : : : ;x̂i;t +� ) be their respective prediction values,
where t is the time at which prediction starts. Then,

SMAPE= 1
� +1

P t+�
z=t

jxi;z� x̂i;z j
(jx̂i;z j+jxi;z j)=2 . This metric is chosen

because of its robustness in accommodating xi;t = 0,
which is often encountered in cybersecurity.

3. The Cybersecurity Granger-Causality (CGC)
Framework

The CGC framework aims to characterize the presence
and utility of G-causality in the context of cybersecurity
time series, as illustrated by cyber attack rate time
series. The framework is designed with the mindset that
it can be adopted or adapted to study G-causality in
other kinds of cybersecurity time series data of a similar
nature. As highlighted in Figure 1, CGC has 4 modules.
As elaborated below, these modules are associated with
a unique set of Research Questions (RQs).

Figure 1.The CGC framework

3.1. Data Pre-processing

The input to the framework is some cybersecurity data,
such as the cyber attacks observed by cyber defense
instruments (e.g., honeypots [59, 60] or network
telescope [4]) over a period of time. In order to represent
the data as time series, we propose considering a
discrete time horizon t = 1;2; : : : ; T at some time
resolution (e.g., hour or day). The dataset contains
the attacking IP addresses that wage attacks against
some victims. Depending on the semantic richness of
the dataset, the attacks may be further divided into,
for example, di � erent types (e.g., denial-of-service or
not). The basic CGC framework focuses on coping
with cyber attack rates, while leaving the treatment of
richer information to its extensions (partly because we
have no such semantically rich datasets). We propose
grouping the attacking IP addresses into networks at

some resolution, such as /8, /16 or /24 networks. Recall
that a /8, /16, and /24 network consists of 2 24, 216,
and 28 IPv4 addresses, respectively. Let n denote the
number of networks at a resolution in question (e.g., n =
28 at the /8 network resolution). For network i (1 � i �
n) at a resolution, an appropriate pre-process is often
needed to derive a time series Xi (TC) = (xi;t )1� t � TC

,
where TC (1 � TC � T ) is the current time and xi;t is
the number of attacks that are waged from network i
at time t .

3.2. Basic Statistical Analysis
Given the pre-processed set ofn time series at a network
resolution, denoted by X(TC) = fX1(TC); : : : ; Xn(TC)g, we
propose conducting some basic analyses to deepen the
understanding of the dataset. We propose associating
this module with the following Research Questions
(RQs):

• RQ1: What is the overall cyber attack situational
awareness?

• RQ2: What is the evolution of the situational
awareness?

• RQ3: What is the tensity of attacks (e.g., the
number of attacks per time interval, the sparsity
of the time series?

• RQ4: What are the characteristics of the time
series?

The preceding basic statistical analysis is both necessary
and important. This is because, for model-�tting
purposes, when a time series is sparse (i.e., containing
many zeros in its observation values), it should be
eliminated from further analysis because state-of-the-
art statistical techniques cannot cope with such sparse
time series data. (Nevertheless, we note that innovative
methods are emerging in order to deal with such sparse
time series [16], which is orthogonal to the purpose of
the present study.)

For the time series that are not sparse, we analyze
their basic statistics (e.g., mean, median, max, and
variance). In order to see how the basic statistical
analysis can deepen our understanding of the data in
question and guide us in modeling the data, we mention
the following. If a time series has a mean value that
is much smaller than its variance, then the time series
cannot be modelled by the Poisson process but should
be �tted with another appropriate model. If several
time series exhibit a similar pattern (i.e., all increasing,
decreasing, simultaneously changing), then they may be
correlated with each other.

3.3. G-causality Analysis
Given a set of pre-processed time series at a network
resolution (with sparse ones eliminated), namely
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X(TC) = fX1(TC); : : : ; Xn(TC)g, this module proceeds as
follows. First, test the stationarity of Xi (TC) 2 X(TC)
because G-causality is de�ned over stationary time
series. For this purpose, there are many methods
(e.g., Phillips-Perron [52] or Augmented Dickey-Fuller
[53]). Second, test the G-causality for every pair of
stationary time series (Xi (TC); Xj (TC)) in X(TC) with
i , j , while recalling that Xi (TC) G-causesXj (TC) if the
null hypothesis that Xi (TC) does not G-causeXj (TC) is
rejected in the F-statistic test. Let pi;j (TC) denote the
p-value in the F-statistic. Then, we only consider the
time series with associated p-values that are smaller
than 0.05, because suchp-values indicate that the null
hypothesis is not rejected.

Now we propose the notion of G-causality
graph, which is a simple, directed, weighted
graph representation of the G-causality relations
between the time series. A G-causality graph is
denoted by G(TC) = (X(TC); E(TC); W(TC)), where
X(TC) = fX1(TC); : : : ; Xn(TC)g is the vertex or node
set that corresponds to the set of networks and
represent their respective cyber attack rate time series,
an arc (Xi (TC); Xj (TC)) 2 E(TC) means a stationary
time series Xi (TC) G-causes time series Xj (TC),
each (Xi (TC); Xj (TC)) 2 E(TC) is associated with a
weight pi;j (TC) which is the p-value mentioned
above, and the p-values formulates a weight matrix
W(TC) = (pi;j (TC))1� i;j � n. With this graph-theoretic
representation, N (Xj (TC)) = fXi (TC) : (Xi (TC); Xj (TC)) 2
E(TC)g represents the set of neighbor nodes that G-
cause Xj (TC), and the in-degree of a node Xj (TC) is
deg(Xj (TC); G(TC)) = jN (Xj (TC))j. Note that an isolated
vertex or node means (i) the corresponding time series
is not stationary or (ii) it has no G-causality relation to
any other node. We propose associating this module
with the following RQs:

• RQ5: What are the characteristics of G-causality
at a single network resolution?

• RQ6: Is G-causality unidirectional or bidirec-
tional?

• RQ7: Is the G-causality relation exhibited
between network resolutions?

In order to simplify notations, we may omit the
mentioning of TC when discussing general concepts
that are applicable to any TC, such as the in-
degree of node Xj in graph G, or when TC is clear
from the context. This leads to G = (X; E; W) and
simpli�es notation deg( Xj (TC); G(TC)) as deg(Xj ; G). We
may further use X0 � X to denote the set of nodes
corresponding to stationary time series and use X00� X0

to denote the set of nodes associated with a G-causality
relation.

3.4. Leveraging G-causality

One important utility of G-causality is to leverage
it to predict cyber attack rate time series to achieve
predictive situational awareness and possibly proactive
defense. Therefore, we propose associating this module
with the following RQ:

• RQ8: How should one leverage G-causality to
predict cyber attack rates?

The key research issue is to select anappropriatenumber
of goodhelpers at the propernetwork resolution(s); this
research issue goes beyond the notion of G-causality. In
order to address this issue, we propose considering 4
factors: direction of G-causality (i.e., unidirectional vs.
bidirectional), the number of helpers that are leveraged
for prediction, p-value (i.e., small vs. medium vs. large),
and layers of network resolutions (e.g., one vs. multiple
layers). For either empirical or theoretical comparison
purposes, these factors can be tied to any prediction
model of interest. As examples, we propose considering
4 classes of models:

• AR: It leverages Xj itself to predict Xj . This model,
as reviewed above, does not leverage G-causality
(or helpers) at all and serves as the baseline model.

• GC(z + 1)VAR: This a family of models that
are inherent to the notion of G-causality, by
leveraging z time series (helpers), which G-cause
Xj (i.e., neighbor nodes pointing to Xj in the
G-causality graph), to predict Xj , where 1 � z �
deg(Xj ; G) with deg( Xj ; G) being the in-degree of
node Xj in G-causality graph G. These models are
elaborated in Algorithm 1 below.

• PenVAR: This model is elaborated below and aims
to avoid over�tting and overparameterization of
the standard VAR model without leveraging G-
causality.

• GCPenVAR: This is a hybrid of PenVAR and
GC(m + 1)VAR where m = deg(Xj ; G), by leverag-
ing all of the times series that G-causeXj (i.e., all
neighbors pointing to Xj in the G-causality graph)
to predict Xj .

GC(z + 1)VAR models . Algorithm 1 leverages z helpers,
namely z neighbors that G-cause Xj to predict Xj ,
where 1 � z � m and m = deg(Xj ; G). The heuristic used
in Algorithm 1 is to leverage the z helpers with the
smallest p-values in the G-causality test, so as to avoid
the combinatorial explosion of

� m
z
�

where m can be
large. The heuristic corresponds to the greedy algorithm
because pi;j may be interpreted as the degree of G-
causality, meaning that the smaller the pi;j , the stronger
the G-causality. Speci�cally, suppose we sort the p-
values corresponding to Xj 's neighbors increasingly as
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Algorithm 1 The GC(z + 1)VAR algorithm for predict-
ing xj;TC+1, 1 � j � n, by leveraging z (z � 1) of the Xi 's
in that G-cause Xj as helpers

INPUT: G-causality graph
G(TC) = (X(TC); E(TC); W(TC)) where
X(TC) = fX1(TC); : : : ; Xn(TC)gand
W(TC) = (pi;j (TC))1� i;j � n
OUTPUT: Predictions x̂j;TC+1 for 1 � j � n

1: for j = 1 to n do
2: N (Xj (TC))  f Xi (TC) : (Xi (TC); Xj (TC)) 2 E(TC)gand

denote its cardinality by m for ease of reference
/* m = deg(Xj (TC); G(TC)) */

3: if m � z then
4: Use the (z + 1)-variate VAR model to �t

Xj (TC) by leveraging Xj and the z helpers
corresponding to the z smallest p-values, according
to Eq.(3) and an appropriate model selection
criterion

5: Use the �tted model to predict x̂j;TC+1
6: else
7: x̂j;TC+1  ? /* Xj is not stationary or

does not have enough G-causality helpers */
8: end if
9: end for

10: Return x̂j;TC+1 for 1 � j � n.

p1;j ; : : : ; pm;j , where j < f1; : : : ; mg. Figure 2 illustrates
4 scenarios of GC(z + 1)VAR for predicting Xj , where
z 2 f1;2;3; mg:

• GC2VAR: Leverage X1 with the smallest p-value
as helper to predict Xj via the bivariate VAR
model.

• GC3VAR: Leverage X1 and X2 as helpers to
predict Xj via the 3-variate VAR model.

• GC4VAR: Leverage X1, X2 and X3 as helpers to
predict Xj via the 4-variate VAR model.

• GC(m + 1)VAR: Leverage all of the m neighbor
X1;j ; : : : ; Xm;j as helpers to predict Xj via the (m +
1)-variate VAR model.

Figure 2. Illustration of GC(z + 1)VAR, where pre�x �GC�
indicates leveraging G-causality and arrows are colored to
indicate their respectivep-values withp1;j � p2;j � : : : � pm;j .

PenVAR and GCPenVAR models . The PenVAR
model can predict d-variate time series altogether,
meaning 1 � d � n where n is the number of networks
at a resolution. Without loss of generality, let
fxt = (x1;t ; : : : ; xd;t ; xj;t )> gt=1;2;::: denote the (d + 1)-
dimensional vector time series. The standard VAR
model can be represented as

xt = � +
X̀

l =1

� (l )xt � l + ut (4)

where ` is the lag, � represents a (d + 1) � 1 intercept
vector, � (l ) denotes a (d + 1) � ` coe� cient matrix, and
ut is a (d + 1) � 1 white noise vector (i.e., independent
and identically distributed normal random vector with
mean 0 and covariance matrix � � , namely a diagonal
matrix with elements representing variances). The
model �tting is to minimize the least square errors

min
�; � (l )









xt � � �

X̀

l =1

� (l )xt � l










2

F

(5)

which involves ( d + 1) + ` (d + 1)2 regression parame-
ters, where jj � jj2F represents the Frobenius norm. This
means that the standard VAR model is likely unstable or
infeasible when d is large (i.e., high dimensions), which
motivates PenVAR.

Let � =
�
� (1); : : : ;� (` )

�
. The PenVAR model reduces

the parameter space and has the following optimization
objective [61]:

min
�; � (l )









xt � � �

X̀

l =1

� (l )xt � l










2

F

+ � jj� jj1; (6)

where � > 0 is the penalty parameter and jj� jj1
represents the L1 norm. The penalty parameter ˆ� is
selected to minimize the one-step ahead mean square
prediction error (MSPE) [61]:

MSPE(� ) =
1
b

k+bX

t=k+1

kx̂t � xt k2 ; (7)

where jj � jj2 is the L2 norm.
The GCPenVAR model is obtained by incorporating

G-causality into the PenVAR model. Unlike the PenVAR
models that predict a vector of d-variate time series
simultaneously, the GCPenVAR model, like GC( z +
1)VAR, leveragesz helpers only, where 1 � z � d.

4. Case Study

Now we present a case study by applying the
framework to analyze a speci�c dataset collected by
a low-interaction honeypot. A honeypot is a cyber
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defense instrument that emulates real-world Internet-
based vulnerable services at a number of IP addresses.
Since these services are exclusively set up for attracting
attacks (i.e., no legitimate services are associated with
these IP addresses), it is a widely-accepted practice
to treat the incoming, unsolicited network tra � c as
attacks [4, 5, 7, 62–69]. The honeypot in question
monitors 1,024 IP addresses and runs a number of low-
interaction honeypot programs, including Honeyd[70]
and Nepenthes[71]. The notion of low-interaction means
that the honeypot only partly emulates the services
in question, which explains why the dataset is only
used for analyzing the cyber attack rate (rather that
cybersecurity semantically richer analyses). The dataset
is collected between 2/6/2014 and 5/13/2014 (i.e.,
T = 97 days). Although the dataset is six years old, it
is su� cient for demonstrating the usefulness of CGC
(while noting that it is often di � cult for academic
researchers to have access to such data). Researchers
with newer datasets can adopt or adapt CGC to analyze
their own datasets.

4.1. Data Pre-processing

The raw data collected by the honeypot is in the
standard PCAP format, which is converted into the �ow
format to represent attacks. A �ow is described by a
tuple of �ve �elds: source (i.e., attacker in this paper)
IP address, destination (i.e., victim or honeypot in this
paper) IP address, source port number, destination port
number, and protocol [72]. For converting PCAP data
into �ow data, a widely-used tool, known as the Yet
Another Flowmeter (YAF) with super_mediator [72], is
used. This process involves two parameters: the �ow
idle time and the �ow lifetime. We use a widely-used
combination of them: 60 seconds for the �ow idle time
and 300 seconds for the �ow lifetime [3–5, 69].

The source (i.e., attacker) IP addresses are grouped
into networks at three resolutions: (i) /8 networks,
with each consisting of 2 24 IP addresses; (ii) /16
networks, with each consisting of 2 16 IP addresses;
and (iii) /24 networks, with each consisting of 2 8 IP
addresses. Since the framework is equally applicable to
any network resolution, we extend the notation G(TC) =
(X(TC); E(TC); W(TC)) to accommodate network resolu-
tions as subscripts [r ] where r 2 f=8; =16; =24g. For exam-
ple, X[=8](TC) denotes the set of nodes (i.e., the attack
rate time series) at the /8 network resolution, X0

[=8] �
X[=8] denotes the corresponding subset of stationary
time series, and X00

[=8] � X0
[=8] denotes the corresponding

subset of stationary time series that are associated with
at least one G-causality.

In order to indicate cross-network-resolution analy-
ses, we associate lower-resolution networks with their
belonging higher-resolution networks. For example,

X0
[=162=8](TC) denotes the stationary time series corre-

sponding to the /16 networks that belong to a /8
network in question; X00

[=162=8](TC), X0
[=242=16](TC), and

X00
[=242=16](TC) are similarly de�ned.

4.2. Basic Statistical Analysis
Characterizing the Overall Cyber Attack Situational Awareness
(Answering RQ1).In order to draw insights into the
network resolution(s) that would be more appropriate
for characterizing the overall cyber threat situational
awareness, Figure 3 plots the time series jX[r ](97)j,
namely the number of attacking networks at a
resolution during the time horizon of T = 97 days. We
make three observations.

First, on average over the T = 97 days, the hon-
eypot observed: jX[=8](97)j = 188 or 188=28 = 73:44%
/8 attacking networks per day; jX[=16](97)j = 12;292 or
12;292=216 = 18:76% /16 attacking networks per day;
and jX[=24](97)j = 40;840 or 40;840=(224 � 4) = 0:24%
/24 attacking networks per day where “ � 4” is to exclude
the 4 /24 networks corresponding to the honeypot
itself. In other words, the attacking networks observed
by the honeypot on a daily basis concentrate at a
small percentage (0.24%) of /24 networks, which are
scattered in a signi�cant number of /16 networks and
even more so in a large number of /8 networks. These
metrics re�ect the average cyber threat landscape sit-
uational awareness, especially that some networks are
better managed than others and that network resolution
matters when measuring the percentage of attacking
networks.

Second, cumulatively over the T = 97 days, the hon-
eypot observed: 204 or 204=28 = 79:69% /8 attack-
ing networks; 27 ;019 or 27;019=216 = 41:23% /16
attacking networks; and 842 ;642 or 842;642=(224 � 4) =
5:02% /24 attacking networks. These metrics re�ect
that as time goes by, more networks get compromised
and then wage attacks against others. Nevertheless,
within a signi�cant period of time ( T = 97 days), the
attacking computers still concentrate at a relatively
small number of /24 networks (5.02%), which are scat-
tered in large numbers of /16 and /8 networks. This
further suggests that some networks are much better
managed than others because the honeypot does not
observe any attack from 94.08% of /24 networks over
T = 97 days.

Third, by contrasting the network resolutions, we
observe that there is a substantial drop at t = 41 (or
3/18/2014) in terms of the numbers of /16 and /24
attacking networks. However, this substantial drop is
at most slightly re�ected in the number of /8 attacking
networks. This means that the /16 and /24 networks
that stop waging attacks at t = 41 belong to a small
number of /8 attacking networks. Unfortunately, it is
not clear what caused this drop at t = 41. One may
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(a) jX[=8](97)j (b) jX[=16](97)j (c) jX[=24](97)j

Figure 3.Time seriesjX[r ](97)j, where thex-axis represents time (unit: day) and they-axis representsjX[r ](97)j (i.e., the number
of networks at resolutionr 2 f=8; =16; =24gthat wage at least one attack during a day).

speculate that there is an Internet-wide operation in
cleaning up botnets residing in a small number of
/8 networks, we cannot �nd any information on such
operations (one source of botnet takedown operations
is https://en.wikipedia.org/wiki/Botnet ). Another
possible, perhaps less likely, scenario is that the
honeypot does not capture most attacks in the Internet
because it only has 1,024 IP addresses; this is less
likely because the drop starting at t = 41 seems to be
consistent for t 2 [41;97].

Insight 1.For measuring cyber threat situational aware-
ness, network resolution matters and /24 resolution
would be more appropriate than /16 and /8, because
attacking computers often belong to a small percentage
of /24 networks that are scattered in many /8 networks.

Characterizing the Evolution of Cyber Threat Situational
Awareness (Answering RQ2).In order to characterize the
evolution of situational awareness, Figure 4a plots the
percentage of the attacking /16 networks with respect
to the /8 networks to which they belong, where time
is divided into t 2 [1;40] and t 2 [41;97] because of
the signi�cant di � erence at t = 41 (cf. Figures 3b and
3c). We make two observations. First, there are 204
/8 attacking networks for t 2 [1;40]. Among them,
70 (or 34:31%) networks have no more than 25%
of their belonging /16 networks waging attacks; 111
(or 54:41%) networks have more than 50% of their
belonging /16 networks waging attacks; 64 (or 31 :37%)
networks have more than 75% of their belonging /16
networks waging attacks. On the other hand, there
are also 204 /8 attacking networks for t 2 [41;97],
and a similar phenomenon is exhibited. This explains
why Figure 3a does not show a signi�cant drop at
t = 41. Second, when compared with the percentage
of attacking /16 networks during t 2 [1;40], the
percentage during t 2 [41;97] exhibits the following:
45 (or 22:06%) /8 networks have more belonging /16
attacking networks; 20 (or 9 :80%) /8 networks have
the same number of belonging /16 attacking networks;
139 (or 68:14%) /8 networks have fewer belonging /16

attacking networks. This also explains why Figure 3a
does not show a signi�cant drop at t = 41.

(a) Percentage of /16 networks waging attacks.

(b) Percentage of /24 networks waging attacks.

Figure 4.Plots of the percentage of attacking networks at higher
vs. lower network resolution duringt 2 [1;40] vs.t 2 [41;97].

Figure 4b plots the percentage of attacking /24
networks with respect to the /16 networks to which
they belong, with time t 2 [1;40] vs. t 2 [41;97]. We
make two observations. First, among the 27;009
/16 attacking networks during t 2 [1;40], 24;948 (or
92:37%) networks have no more than 25% of their
belonging /24 networks waging attacks; 450 (or 1 :67%)
networks have more than 50% of their belonging /24
networks waging attacks; 112 (or 0 :41%) networks have
more than 75% of their belonging /24 networks waging
attacks. On the other hand, there are also 27;009 /16
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